

A review on physics-based patents that influenced modern technology and daily life: from discovery to invention

Himanshu Hazra

Assistant Professor,
Dept. of Physics, Sitananda College,
Purba Medinipur, West Bengal, India.
E-mail ID: mrhazra2011@gmail.com

Abstract: Some of the greatest revolutionary breakthroughs in human history have been fueled by physics, the foundation of scientific investigation. This article examines how patents have transformed companies and society by turning theoretical ideas in physics into useful inventions. This research demonstrates the path from theoretical scientific understanding to practical application through in-depth case studies, ranging from the development of the transistor and laser to MRI, quantum cryptography, and superconducting magnets. The cases show the socioeconomic implications and ethical issues in the patenting process in addition to the scientific and technological difficulties involved. The article highlights how physics continues to influence the future through creative problem-solving, institutional support, and effective intellectual property protection by looking at these significant turning points.

Keywords: Technology transfer, intellectual property, applied physics, case studies, science and society, commercialization of research, MRI, quantum cryptography, optical fiber communication, superconductivity, physics innovation, scientific patents, transistors, lasers, and Bose headphones.

Overview:

Many technological innovations are conceptually based on physics, a fundamental science. However, it frequently takes both scientific inventiveness and strategic innovation—which results in patents—to translate theoretical ideas into useful implementations. In addition to protecting intellectual property, patents guarantee that innovators profit from their creations. This article examines a few case studies where patents resulting from fundamental physics changed industry and daily lives. It also draws attention to the difficulties, scientific methods, and societal effects associated with these innovations.

Intellectual property rights (IPR) are defined as:

The legal rights that organizations or people are granted over their creative works are known as intellectual property rights, or IPR. These rights give owners or creators the ability to manage and profit from the use of their names, designs, inventions, literary and artistic works, and pictures in

commercial contexts.

Indian Views on Intellectual Property Rights:

Under TRIPS, India has created a comprehensive IPR framework that is both in line with international norms and adapted to the country's socio-economic objectives.

Legal and Constitutional Framework:

The Indian Constitution's Article 300A safeguards intellectual property rights. IPR regulations are administered by the Office of the Controller General of Patents, Designs, and Trademarks (CGPDTM).

Important Indian IPR Laws

IPR type	The law
Patent	The 1970 Patents Act (modified in 2005 to conform to TRIPS)
Copyright	The 1957 Copyright Act (modified in 2012)
Trademark	The 1999 Trade Marks Act
Design	The Designs Act, 2000
Geographical Indications	The 1999 Act Concerning the Registration and Protection of Geographical Indications of Goods
Variety of Plants	The 2001 Act Protecting Plant Varieties and Farmers' Rights
Layouts of Semiconductor ICs:	The Layout-Design Act of 2000 for Semiconductor Integrated Circuits

Important Aspects of Indian IPR Law:

1. The 2016 National IPR Policy seeks to combine the public interest with rights while fostering innovation.

2. Reasonably priced medical care Philosophy: In order to balance intellectual property rights with public health, India permits compulsory licensing to guarantee access to necessary medications (most notably in the Novartis v. Union of India case).

3. By means of programs such as the Traditional Knowledge Digital Library (TKDL), traditional knowledge (TK) is being protected.

An International View of IPR: The World Intellectual Property Organization, or WIPO, defines: "Intellectual property (IP) refers to creations of the mind, such as inventions, literary and artistic works, designs, symbols, names, and images used in commerce."

International IPR frameworks and treaties that are supervised by WIPO include:

1. Paris Convention (1883): Industrial property (trademarks, patents) protection.
2. Literary and artistic works are protected by the Berne Convention (1886).
3. The WTO oversees the TRIPS Agreement (1994), which establishes minimal requirements for IPR protection around the world.

Global IPR Types:

- **Patent:** 20 years of exclusive rights for inventions.
- **Copyright:** The rights to works of art, music, literature, and digital media.
- **Trademark:** Brand names, logos, and phrases are protected by trademarks.
- **Industrial Design:** Preserving an object's aesthetic appeal.
- **Geographical Indication:** Rights for goods with a particular geographical origin and quality such as champagne and Darjeeling tea are known as Geographical Indications (GI).

The Transistor (1947), case study No 1: William Shockley, Walter Brattain, and John Bardeen were the inventors. Patent: Bell Laboratories; U.S. Patent No. 2,569,347 (1951)

Principles of Science: Solid-state physics and quantum physics are the foundations of the transistor's creation. It was essential to comprehend semiconductors, particularly how electrons behave in crystal lattices. By enabling control over electrical current through a tiny silicon or germanium component, the transistor replaced large vacuum tubes.

Effects: The current electronics industry took a major turn thanks to the transistor patent. It is a fundamental component of integrated circuits, which power everything from satellites to smartphones. In 1956, Bardeen and his associates were awarded the Nobel Prize in Physics.

LASER (1960) is the second case study No.2: Theodore Maiman created the first usable laser at Hughes Research Lab on May 16, 1960. Patent: 3,353,115 (1967) U.S. Patent Charles Townes and Arthur Schawlow's 1958 precursor theory

Principles of Science: Light Amplification by Stimulated Emission of Radiation is what LASER stands for. Quantum electrodynamics, more especially Einstein's 1917 work on stimulated emission, provides the foundation of the idea. Using a ruby crystal and population inversion—a condition in which there are more electrons in an excited state than in a ground state—Maiman created the first laser.

Effects: In the 20th century, laser technology was revolutionary and used extensively in a wide range of human endeavors. Barcode scanning, surgery, and optical communication are just a few of the applications for

lasers. The patent signaled a revolution in the study of physics and its application to economically feasible technology.

Magnetic Resonance Imaging (MRI) Case Study No. 3: The inventors were Paul Lauterbur, Peter Mansfield, and Raymond Damadian. Patent number: 3,789,832 (1974) U.S. Scientific Domains: Quantum Mechanics, Nuclear Magnetic Resonance (NMR)

Principles of Science: Nuclear magnetic resonance, in which nuclei in a magnetic field absorb and re-emit electromagnetic radiation, is the foundation of magnetic resonance imaging (MRI). This approach relies heavily on quantum spin and relaxation durations. These characteristics are used by MRI to create fine-grained pictures of inside human tissues.

Effects: Mr. Damadian concentrated on using MRI for medical diagnostics, particularly for cancer detection based on variations in NMR signals between normal and malignant tissues. The MRI transformed medical diagnostics, notwithstanding Damadian's dubious claim of primacy. In 2003, Lauterbur and Mansfield (but not Damadian) were awarded the Nobel Prize. The method is a prime example of how patented invention combines physics and medicine.

Case Study 4: The 1954 Photovoltaic Cell Gerald Pearson, Calvin Fuller, and Daryl Chapin were the inventors. Patent: 2,780,765 U.S. Patent Organization: Bell Laboratories

Principles of Science: Based on Alexandre-Edmond Becquerel's 1839 discovery of the photovoltaic phenomenon, contemporary solar cells directly transform sunlight into electrical power using semiconductor junctions. Solar energy conversion is based on the quantum physics of band gaps and charge carriers.

Effects: The foundation of renewable energy systems is solar cells. The commercial solar business was sparked by the patent, and because of developments in materials science and physics, solar usage has grown exponentially in subsequent decades.

Case Study 5: Energy Storage and MRI Using a Superconducting Magnet

Many inventors, including James E. Mercereau, who held a significant early patent Patent: 3,325,853 U.S. Patent No. (1967)

Principles of Science:

Heike Kamerlingh Onnes made the discovery of superconductivity in 1911. Superconductivity is the occurrence of zero electrical resistance in some materials at very low temperatures. Strong magnetic fields can be produced with little energy loss because of the physics underlying Cooper pairs and the BCS theory.

Effects: MRI scanners, maglev trains, and experimental nuclear fusion

reactors all use superconducting magnets. The vast economic and scientific significance of low-temperature physics is reflected in the number of patents in this sector.

Case Study 6: Communication over Optical Fiber

Charles Kao and George Hockham were the inventors. Several patents, including U.S. Patent No. 3,711,262 (1973),

Principles of Science: Total internal reflection in optical fibers and waveguide theory serve as the foundation for the idea. Light pulses can travel long distances with little loss thanks to the refractive index difference between the core and cladding.

Effects: The current telecommunications and internet infrastructure is a result of Kao's efforts. In 2009, he received the Nobel Prize in Physics. High-speed data transfer, fiber-to-home technology, and international communication were made possible by the patent series.

Case Study 7: Headphones with Noise Cancellation by Bose

Patent: U.S. Patent No. 4,455,675 (1984); inventor: Amar G. Bose

Principles of Science

Wave interference is the basis for noise-cancelling technology. Active noise cancellation eliminates unwanted sound through destructive interference by producing a sound wave that is the opposite (antiphase) of ambient noise.

Effects: Bose's invention made physics a high-end consumer good. In consumer electronics, audio engineering, and aircraft, the patented technology became the norm.

Case Study 8: Rare Gas Halide Laser (Excimer Laser):

In 1970 at **Northrop Corporate Research Laboratory** in California, Dr. Mani Lal Bhaumik led a team that successfully **demonstrated the first efficient excimer laser operation**, particularly with xenon chloride (XeCl)

Inventors: Mani Lal Bhaumik (With Colleagues), Patent: US Patent No 3,911,396 (1975)

Assignee: Northrop Corporation

Principles of Science

The excimer laser is based on **quantum electronic transitions in excited molecular complexes**. The molecules (excimers) exist only in the excited state and dissociate rapidly after releasing energy as UV light. The **short wavelength UV light** (193–351 nm) enables high-resolution applications. **Excimer**" stands for **excited dimer**—a short-lived molecule formed from two species, one of which is in an excited electronic state. Excimer lasers produce **ultraviolet (UV) light** using noble gas-halide mixtures (like argon fluoride, krypton fluoride).

Effect

Medical Field (LASIK Eye Surgery):

The excimer laser's ability to **remove microscopic layers of corneal tissue** without heat damage made it the **backbone of LASIK**, which has improved the vision of **millions worldwide**.

Semiconductor Industry:

Widely applied in **photolithography** to etch intricate circuits onto silicon wafers, enabling **Moore's Law** progress.

Industrial & Scientific Use:

Precise material processing (polymers, metals, ceramics) and scientific instrumentation involving **ultraviolet laser spectroscopy**

Case Study 9: Recent Developments in Quantum Cryptography

Charles Bennett and Gilles Brassard were the inventors of the BB84 Protocol. Patent: 5,307,410 U.S. Patent (1994) Scientific Principle: The No-Cloning Theorem and Heisenberg's Uncertainty Principle

Principles of Science

By distributing quantum keys, communicating parties are warned that any effort at eavesdropping will disrupt the quantum states of photons. Secure transmission is ensured by the science of quantum measurement.

Effects: This invention established the foundation for quantum-safe communication networks, even though they are still in their infancy in the commercial world. Infrastructure for quantum encryption is now heavily funded by governments and businesses.

Lessons and Themes That Are Wider

1. Experiment and Theory Go Hand in Hand

The majority of physics-related patents are based on theoretical models, but their realization necessitates creative innovation. For instance, lasers were inspired by Einstein's photon theory, but their construction required decades of laboratory work.

2. Institutions Are Important

Companies such as Bell Labs, MIT, IACS (India), and CERN offer the resources and collaborative environment that connect engineering and physics, resulting in patentable ideas.

3. Physics' commercialization

These case studies show how abstract ideas in physics, such as superconductivity, wave-particle duality, or spin, can be turned into commercially viable goods and services.

4. Policy and Ethical Aspects

Even though patents provide financial security, free science is controversial, particularly when it comes to life-saving breakthroughs like vaccinations or MRIs. Striking a balance between access and profit is still difficult.

Conclusion:

Physics has consistently produced innovations that have changed the

human experience, from the transistor to quantum cryptography. In addition to safeguarding innovation, patents in this field signal significant turning points in human progress from theoretical knowledge to actual mastery. One invention at a time, these case studies demonstrate how physics has shaped the modern world.

References

1. C. C. Mody (2011). *The Extended Reach of Moore's Law: American Science and Microelectronics*. MIT Press.
2. S. Sweeney (2001). IEEE Spectrum, "The History of the Laser."
3. G. Basalla (1988). *Technological Development*. Cambridge University Press.
4. "Tumor Detection by Nuclear Magnetic Resonance," Damadian, R. (1971). *Science*, 171 (3976).
5. "Nobel Lecture: Sand and glass: Fiber for a new era" by C. K. Kao (2000). *Modern Physics Reviews*, 82(3).
6. Brattain, W., and Bardeen. J (1948). "A Semiconductor Triode: The Transistor." *physical examination*.
7. Schawlow, A. L., and Townes, C. H. (1958). *Spectroscopy using microwaves*. McGraw-Hill.
8. Brassard, G., and Bennett, C. (1984). "Quantum Cryptography: Coin Tossing and Public Key Distribution." *IEEE International Conference on Computers, Systems, and Signal Processing Proceedings*.
